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Abstract: Curcumin metabolites namely curcumin monoglucuronide and curcumin 
diglucuronide were synthesized using an alternative synthetic approach. The anti-oxidant 
potential of these curcumin glucuronides was compared with that of curcumin using DPPH 
scavenging method and Oxygen Radical Absorbance Capacity (ORAC) assay. The results 
show that curcumin monoglucuronide exhibits 10 fold less anti-oxidant activity (DPPH 
method) and the anti-oxidant capacity of curcumin diglucuronide is highly attenuated 
compared to the anti-oxidant activity of curcumin. 

Keywords: curcumin monoglucuronide; curcumin diglucuronide; Synthesis; Anti-oxidant; 
DPPH; ORAC 

 

1. Introduction 

Curcumin (1) is the major curcuminoid present among the naturally occurring three curcuminoids, 
long believed to be bioactive components, isolated from natural Curcuma longa Linn. (turmeric). 
Turmeric is mainly consumed as spice in India and Asia and also used in traditional medicine since 
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ancient times.The unique structure of curcumin with its 1,3-diketo sub-structure, existing mainly in the 
enolic form in solution and exclusively in the solid state has created a pharmacological conundrum in 
that it interacts with diverse pharmacological targets without palpable toxicity even at fairly high doses. 
Pharmacological studies over the last few decades on curcumin have revealed its therapeutic potential 
as anti-cancer [1], anti-oxidant [2], anti-inflammatory [3], and antimicrobial [4] agents, and curcumin also 
possesses anti-arthritic [5], anti-diabetic [6], hepatoprotective [7], neuroprotectant [8] and antidepressant [9] 
activities. 

The poor aqueous solubility and rapid metabolism of curcumin have often been cited as mitigating 
factors for the transition of curcumin into a more useful therapeutic agent [10]. The pleiotropic 
pharmacological activities of curcumin despite its metabolism have given rise to the speculation whether 
the in vivo pharmacological activities of curcumin are attributable through its metabolites. Curcumin 
metabolizes rapidly to several components. The major components of the Phase II metabolites are the 
glucuronides of curcumin and are assumed to occupy an important place in bioactivity of curcumin after 
its administration orally [11–13]. Some of the formulations of curcumin were reported to have enhanced 
bioavailability of curcumin actually did not enhance curcumin in plasma but only increased the 
concentration of metabolite, curcumin glucuronide [14,15]. Oral ingestion of these formulations in fact 
failed to detect any free curcumin in circulation. After administered orally, curcumin is invariably found 
in almost negligible quantity in plasma [14,15]. Despite its low concentration in plasma, curcumin still 
exhibits its biological activity even though no systematic study exists on the detection of curcumin in 
target tissues. Numerous studies [1–16] have been carried out on curcumin in last few decades to 
understand its mechanism of action; however, the low bioavailability and retention of bioactivity of 
curcumin still remain unexplained conundrums. Hence, to understand the mechanism of action of 
curcumin more precisely, it is essential to study the biological activities/functions of its metabolites too. 
Although one of the major metabolites of curcumin is found to be curcumin monoglucuronide [16,17], 
when curcumin is administered orally, the biological activity of curcumin monoglucuronide could not 
be studied previously due to the lack of availability of these molecules. There are many reports on the 
identification of curcumin glucuronides in plasma by LC-MS [17–19], however only in 2014, two  
groups [20,21] separately have synthesized curcumin glucuronides enzymatically [20] and chemically [21] 
in reasonable quantities and studied its biological activity on certain human cancer cell lines and reported 
the bioactivity. 

The access of alternative synthetic approaches in the literature on the synthesis of the same molecule 
could open up a number of choices in the scientific community in case they wish to elaborate the study 
in the same scientific field. The chemical synthesis of curcumin monoglucuronide was reported recently 
by Bornmann et al. [21], however we have developed an alternative synthetic approach to synthesize 
curcumin monoglucuronide in gram quantity. Our practical synthesis of curcumin monoglucuronide 
(Figure 1) in gram quantity has not yet been reported. 

Meanwhile, analytical data for curcumin diglucuronide (Figure 1) and its acetylated intermediate 
were reported [21] but so far there are no experimental details accessible from the literature for 
synthesizing these two molecules. We are the first to report herein the experimental details on synthesizing 
curcumin diglucuronide and its intermediate acetylated curcumin diglucuronide. 
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Figure 1. Chemical structures of Curcumin (1), curcumin monoglucuronide (8) and curcumin 
diglucuronide (11). 

Oxidative stress is the common phenomenon that causes damage in our body system due to the 
generation of free radicals. Negligence of these stresses could exacerbate free radical damage. It is 
reported [22,23] that free radicals could damage DNA forming as a main product 8-oxo-guanine [23] 
and it may lead to the incidence of cancer [22,23]. Anti-oxidants [24,25] generally scavenge free  
radicals [24], stabilize them from free radical damage and help in normalizing health disorders [25]. 
Anti-oxidants are also recommended as chemopreventive agents for cancer [26]. 

Curcumin is well recognized as an anti-oxidant and reported to have free radicals scavenging  
activity [27] that recommends its application as an anti-cancer agent [1]. However, it is not clear whether 
curcumin retains its anti-oxidant activity after it is orally administered or after bioconversion in vivo into 
its metabolites, curcumin glucuronides, that may still retain the anti-oxidant activity inside the body 
system. To find a plausible explanation, we focused on synthesizing and studying the  
anti-oxidant activity of curcumin glucuronides in focused manner with respect to curcumin and the 
results are elaborated in this report. This study clearly demonstrates that curcumin monoglucuronide 
shows 10 fold less anti-oxidant activity and curcumin diglucuronide is not at all noticeably effective as 
an anti-oxidant in comparison to anti-oxidant activity of curcumin (by DPPH). It is concluded that 
glucuronide metabolites of curcumin, namely, curcumin monoglucuronide and curcumin  
di-glucuronide are not active components exhibiting anti-oxidant activity of curcumin after its oral 
administration. 

Thus our studies show that the metabolic conversion of curcumin into the two glucuronides (8) and 
(11) render it into essentially inactive anti-oxidant compounds that may not exert the necessary  
anti-oxidant action in disease states as delineated earlier. This observation combined with the findings 
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of others that the curcumin glucuronides (8) and (11) are ineffective as NFκB inhibitors [21] as well as 
very poorly cytotoxic to cancer cell lines [20,21] support the conclusion that unmodified curcuminoids 
are the pharmacologically active agents while their glucuronidated biotransformed products are not. 

2. Experimental 

2.1. Reagents, Instrumentation 

All chemicals were purchased either from Spectrochem, India, Acros Organics, India or Aldrich, USA 
and used directly without further purification. Solvents (hexane, tetrahydrofuran, ethylacetate, acetone, 
dichloromethane, chloroform, methanol, and ethanol) were purchased from commercial suppliers in 
India and were dried over sodium metal (hexane and tetrahydrofuran), over potassium carbonate 
(ethylacetate and acetone), over calcium chloride (dichloromethane and chloroform) and over 
magnesium turning (methanol and ethanol) before use. HPLC grade N,N-dimethyl formamide (DMF) 
was purchased from Spectrochem, India and used as received. Reaction was monitored by thin layer 
chromatography (TLC) on TLC silica gel F254 (Merck Specialities Private Ltd., Mumbai, India) and 
visualized either under UV (254 nm) or by charring with 5% sulfuric acid in methanol. Melting points 
were checked by using LABINDIA MR-VIS (visual melting range) apparatus and were uncorrected. 1H 
and 13C-NMR spectra were recorded on a Varian 300 MHz NMR Instrument. Chemical shifts were 
reported in ppm relative to TMS as reference standard. Coupling constants were presented in Hertz and 
splitting pattern were assigned as s, singlet; d, doublet; t, triplet; m, multiplet, and bs, broad singlet. The 
purity of compounds was verified by analytical HPLC. HPLC analyses were performed in Shimadzu 
Labsolutions HPLC System. Analytical reversed phase C18 column (ThermohypersilBDS, UK)  
(250 mm × 4.6 mm, 5 µm) was used with a gradient where mobile phase A was water:acetonitrile:acetic 
acid (8.5:1.5:0.005) and mobile phase B was methanol. Flow rate was 1.0 mL/min with UV detection at 
420 nm. Mass spectra were recorded on Thermo-Fisher LCQ Advantage Max (LAM-10234) ion trap mass 
spectrometer. Column chromatography was performed on silica gel (60–120 mesh) purchased from 
commercial supplier, India. 

2.1.1. Synthesis of Methyl [1-O-(4′-formyl-2′-methoxyphenyl)-2,3,4-tri-O-acetyl-β-D-
glucopyranosiduronate) (4) 

Methyl 1-bromo-2,3,4-tri-O-acetyl-α-D-glucopyranosiduronate (2) (27g, 68 mmol) and vanillin (3) 
(11 g, 72.4 mmol) were dissolved in 120 mL of chloroform and then 120 mL of 1N sodium hydroxide 
solution and tetrabutyl ammonium bromide (27g, 72.4 mmol) were added. The reaction mixture was 
stirred at 50 °C for 4 h. It was cooled to RT and diluted with 250 mL of chloroform. Organic layer was 
washed with water (100 mL × 2), cold 1N hydrochloric acid solution (100 mL × 3), water  
(100 mL × 2) and brine solution (100 mL × 1), respectively. It was dried over sodium sulfate, filtered 
and concentrated to obtain 17 g of crude material. The crude material was purified by column 
chromatography over silica gel (400 g). Elution with 1:1 hexane-ethyl acetate afforded compound 4 as 
white powder. Yield 9.6 g (28%), Rf 0.40 (1:1 hexane-ethyl acetate). 1H-NMR (CDCl3):  
δ 9.81 (s, 1H, CHO), 7.38–7.35 (m, 2H), 7.19 (d, 1H, J = 7.2 Hz), 5.31–5.23 (m, 3H), 5.15 (d, 1H,  
J = 6.6 Hz, H-1′), 4.14 (d, 1H, J = 8.1 Hz, H-4’), 3.82 (s, 3H, -C6H3OCH3), 3.66 (s, 3H, -COOCH3), 



Antioxidants 2015, 4 754 
 

 

2.01. 1.97. 1.93 (3s, 9H, OCOCH3). 13C-NMR (CDCl3): δ 191.3 (-CHO), 170.3 (COOCH3), 169.6, 
169.4, 167.1, 151.1, 151.0, 133.1. 125.7, 118.7, 110.8, 99.7, 77.8, 72.8, 71.7, 71.0, 69.2, 56.3, 53.2, 
20.82, 20.8, 20.7 (MS-APCI): 485.83 (M + NH4)+(C21H24O12.NH4+ requires 486.4465). 

2.1.2. 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one (5) 

Vanillin (3) (20 g, 131.6 mmol) was dissolved in 120 mL of acetone and then a solution of sodium 
hydroxide (6g, 148 mmol) in water (80 mL) was added. The reaction mixture was stirred at 0–10 °C for 
1 h. Ice-bath was removed and it was stirred at RT for 48 h. The reaction mixture was evaporated to 
dryness and then acidified with aqueous 1 N hydrochloric acid solution. Precipitated solid was filtered, 
washed with water (100 mL × 3) and dissolved in 200 mL of dichloromethane. The solution was dried 
over sodium sulfate, filtered and evaporated. The crude product was stirred with 100 mL of ethyl acetate 
for 30 min. Precipitated solid was filtered and washed with ethyl acetate (50 mL × 2) and dried under 
high vacuum to obtain titled compound (5) as yellow powder. Yield 18 g (71%). Rf 0.80 (1:1 hexane-
ethyl acetate). 1H-NMR (CDCl3): δ 7.42 (d, 1H, J = 16.2 Hz, H-4), 7.06–7.01 (m, 2H), 6.90 (d, 1H, J = 8.1 
Hz), 6.55 (d, 1H, J = 16.2 Hz, H-3), 3.88 (s, 3H, -C6H3OCH3), 2.33 (s, 3H, H-1). 13C-NMR (CDCl3):  
δ 198.9, 148.5, 147.1, 144.2, 126.9, 125.0, 123.7, 115.1, 109.5, 56.1, 27.4. MS (APCI):  
193.05 (M + H)+, (C11H13O3 requires 193.2189). 

2.1.3. 5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-1,4-hexadien-3-one (6) 

To a mixture of tetrahydrofuran (50 mL) and ethanol (5 mL, 87 mmol), sodium metal (2 g,  
87 mmol) was added and it was refluxed at 95–100 °C until all sodium metal was consumed (~4 h).  
A solution of compound 5 (5 g, 26 mmol) in tetrahydrofuran (25 mL) and ethyl acetate (25 mL) was 
then added dropwise (~10 min). After completion of addition, the reaction mixture was stirred at  
95–100 °C for 3 h. It was cooled to RT and diluted with 100 mL of ethylacetate. Organic layer was 
washed with cold 1N hydrochloric acid solution (100 mL × 3), water (50 mL × 1) and brine solution  
(50 mL × 1), respectively. The crude material was purified by column chromatography over silica gel 
(60 g). The column was eluted with 2:1 hexane-ethyl acetate and the desired fractions were collected, 
concentrated and dried under high vacuum to afford compound 6 as yellow powder. Yield 2.8 g (46%). 
Rf 0.75 (1:1 hexane-ethyl acetate). 1H-NMR (CDCl3):1H-NMR (DMSO-d6): δ 9.66 (s, 1H), 7.51 (d, 1H, 
J = 15.9 Hz, H-6), 7.31 (d, 1H, J = 1.8 Hz), 7.14–7.11 (m, 1H), 6.83 (d, 1H, J = 8.1 Hz), 6.65 (d, 1H,  
J = 16.2 Hz, H-5), 5.84 (s, 1H), 3.84 (s, 3H, -C6H3OCH3), 2.13 (s, 3H, H-1). 13C-NMR  
(DMSO-d6): δ 196.8, 178.3, 149.2, 148.0, 140.3, 126.4, 123.0, 119.7, 115.7, 111.2, 100.6, 55.7, 26.5. 
MS (APCI): 232.91 (M−H)− (C13H13O4 requires 233.2400). 

2.1.4. Mono-[methyl 2,3,4-tri-O-acetyl-β-D-glucopyranosiduronate]-curcumin (7) 

Compound 5 (1.5g, 6.4 mmol) was dissolved in DMF (50 mL) and then added 0.7 g (9.6 mmol) of 
boric anhydride. It was stirred at 75–80 °C for 30 min and then added 7 mL (25.6 mmol) of tri-s-butyl 
borate and stirred for additional 1h. A solution of compound 4 (3 g, 6.4 mmol) in DMF (10 mL) was 
then added followed by 0.3 mL (2.6 mmol) of n-butyl amine. The reaction mixture was stirred at 75–80 °C 
for 4 h. It was cooled to 50–55 °C, 10% aqueous acetic acid (100 mL) was then added and stirred for  
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1 h. After cooling to RT, 100 mL of water was added and stirred for 30 min and precipitated solid was 
collected after decanting the aqueous solution. Solid material was dissolved in 150 mL of ethyl acetate 
and washed with cold 1N hydrochloric acid solution (30 mL × 3), water-brine (4:1) (50 mL × 3) and 
brine solution (50 mL × 1) respectively. Organic layer was dried over sodium sulfate, filtered and 
evaporated. The crude material was purified by three consecutive crystallizations. Crude material was 
dissolved in 150 mL of ethyl acetate and then 100 mL of hexane was added portion-wise and stirred at 
RT for 30 min. Precipitated material was collected by filtration. It was precipitated again by dissolving 
in 20 mL of chloroform and adding 60 mL of hexane. It was repeated one more time and the precipitated 
yellow solid was collected by filtration and dried under high vacuum to afford titled compound 7 as 
yellow powder. Yield: 3.2 g (yellow solid) (73%). Rf = 0.35 (1:1, hexane:ethyl acetate). 1H-NMR 
(CDCl3): δ 7.57 (d, 1H, J = 15.6 Hz), 7.54 (d, 1H, J = 15.6 Hz), 7.14–7.02 (m, 5H), 6.92–6.89 (m, 1H), 
6.50 (d, 1H, J = 15.9 Hz), 6.46 (d, 1H, J = 15.9 Hz), 5.8 (s, 1H), 5.38–5.28 (m, 3H), 5.09 (d, 1H,  
J = 6.0 Hz, H-1), 4.15 (d, 1H, J = 7.8 Hz, H-4), 3.91 (s, 3H), 3.84 (s, 3H), 3.74 (s, 3H), 2.09, 2.06 and 
2.06 (3s, 9H). 13C-NMR (CDCl3): δ 184.4, 182.4, 170.4, 169.7, 169.6, 167.2, 150.9, 148.3, 147.5, 147.1, 
141.3, 139.7, 132.0, 127.7, 123.7, 123.2, 121.8, 121.7, 120.1, 115.2, 111.8, 110.0, 101.8, 100.4, 77.8, 
72.7, 71.9, 71.2, 69.4, 56.2, 56.1, 53.2, 20.9, 20.8 and 20.7. MS (APCI): 684.84 (M+H)+ (C37H49O5 
requires 684.6406).  

2.1.5. Mono-(β-D-glucopyranosiduronic acid)-curcumin (curcumin monoglucuronide) (8) 

Compound 7 (2.75 g, 4 mmol) was dissolved in methanol (50 mL) and then 22 mL of 0.3 N sodium 
methoxide solution was added. The reaction mixture was stirred at RT for 4 h and then 22 mL of water 
was added. It was stirred at RT for another 14 h and then acidified with Dowex (H+) resin. The solution 
was filtered, concentrated and dried under high vacuum. The crude product was purified by column 
chromatography on silica gel (80 g). Column was eluted with 4:1, 2:1 and 1:1 chloroform–methanol. 
Desired fractions were collected and concentrated and dried under high vacuum for 2 h to obtain the 
desired compound 8 as yellow powder. Yield: 1.25 g (57%). MP 158–160 °C, Rf = 0.65 (2:1 CHCl3-MeOH). 
HPLC purity 96%, retention time: 29.70 min. 1H-NMR (DMSO-d6): δ 9.8, (bs, COOH), 7.54 (d, 2H,  
J = 15.9 Hz), δ 7.32 (d, 2H, J = 17.4 Hz), 7.22 (d, 1H, J = 17.4 Hz), 7.15–7.09 (m, 2H), 6.85–6.80  
(m, 2H), 6.07 (s, 1H), 5.18 (bs, 2H), 3.99–3.91 (m, 2H), 3.81 (s, 6H). 13C-NMR (DMSO-d6): δ 184.7, 
183.1, 170.8, 150.0, 149.8, 148.6, 148.5, 141.8, 140.5, 129.7, 127.0, 123.9, 123.3, 121.8, 116.4, 115.6, 
111.9, 101.9, 99.8, 76.6, 76.1, 73.5, 72.0, 56.34 and 56.3. MS (APCI): 543.12 (M−H)− (C27H27O12 
requires 543.4962), Anal Calcd for C27H28O12: Cfound: 59.56, Hfound: 4.82. (Ccalcd: 59.56, Hcalcd: 5.18). 

2.1.6. Bis-[methyl 2,3,4-tri-O-acetyl-β-D-glucopyranosiduronate]-curcumin (10) 

Acetyl acetone (9) (0.4mL, 4.1 mmol) was dissolved in DMF (50 mL) and 0.3 g (4.1 mmol) of boric 
anhydride was added. The reaction mixture was stirred at 75–80 °C for 1 h, 4.6 mL (17.1 mmol) of  
tri-s-butyl borate was then added and stirred for additional 1 h. A solution of compound 4 (4 g,  
8.55 mmol) in DMF (10 mL) was then added followed by 0.2 mL (1.7 mmol) of n-butyl amine. The 
reaction mixture was stirred at 75–80 °C for 3 h. It was cooled to 50–55 °C and 10% aqueous acetic acid 
(100 mL) was then added and stirred at 50–55 °C for 1 h. After cooling to RT, water (100 mL) was 
added and stirred for 30 min. A solid was precipitated. The aqueous layer was decanted and the solid 
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was washed twice with water (20 mL × 2). Precipitated solid was dissolved in ethyl acetate  
(150 mL). Organic layer was washed with cold 1 N hydrochloric acid solution (30 mL × 3), water-brine 
(4:1) (50 mL × 3) and brine solution (50 mL × 1), respectively. Organic layer was dried over sodium 
sulfate and evaporated. The crude material was purified by column chromatography on silica gel  
(200 g). Column was eluted with 1:1 and 2:1 ethyl acetate-hexane. Desired fractions were pooled, 
concentrated and dried under high vacuum to afford compound 10 as yellow powder. Yield: 2.4 g (59%). 
Rf = 0.2 (1:1 hexane-ethyl acetate). 1H NMR (CDCl3): δ 7.51 (d, 2H, J = 15.6 Hz), 7.10–7.01 (m, 6H), 
6.46 (d, 2H, J = 15.9 Hz), 5.8 (s, 1H), 5.32–5.22 (m, 6H), 5.05 (d, 2H, J = 6.6 Hz, H-1′), 4.11 (d, 2H,  
J = 6.9 Hz, H-4’), 3.80 (s, 6H), 3.70, 3.69 (2s, 6H), 2.04, 2.03, 2.02, 2.01, 2.00 and 1.99 (6s, 18H).  
13C-NMR (CDCl3): δ 183.3, 170.3, 169.6, 169.5, 167.1, 150.9, 147.6, 140.2, 131.9, 123.7, 121.9, 120.1, 
111.9, 101.9, 100.4, 76.9, 72.8, 71.9, 71.2, 69.4, 56.3, 53.1, 20.8 and 20.7. MS (APCI): 1000.74 (M)+ 
(C47H52O24 requires 1000.9013).  

2.1.7. Bis-(β-D-glucopyranosiduronic acid)-curcumin (curcumin diglucuronide) (11) 

Compound 10 (0.5 g, 0.5 mmol) was taken in 20 mL of methanol and 5 mL of 0.3N sodium methoxide 
solution was then added. The reaction mixture was stirred at RT for 8 h and then 5 mL of water was 
added and stirred at RT for another 18 h. It was then acidified with Dowex (H+) resin, filtered, 
concentrated and dried under high vacuum. The crude product was subjected to crystallization. Crude 
mixture was taken in 5 mL of methanol and 25 mL of ethyl acetate was added and stirred for  
30 min. Precipitated yellow solid was collected by filtration and washed with ethyl acetate (10 mL × 2). 
It was dried under high vacuum to obtain compound (11) as yellow powder. Yield: 0.15g, Rf = 0.15 (2:1 
CHCl3-MeOH). HPLC purity 82%, retention time: 19.59 min. MS (APCI): 719.06 (M−H)− (C33H35O18 
requires 719.6203). 

2.2. Antioxidant Assay by DPPH [28,29] 

The assay mixture contains 1.5 mL of 0.1mM DPPH methanolic solution, dimethyl sulfoxide 
(DMSO) solutions of various concentrations of the material and methanol in a total volume of 3 mL. 
Blanks (1.5 mL of methanol and 1.5 mL of DPPH solution) and controls (0.5 mL of curcumin solution 
in DMSO and 2.5 mL of methanol) were also taken. The mixture was incubated at 37 °C for 30 min. 
The reduction of absorbance was measured spectrophotometrically at 516 nm and the result is 
summarized in Table 1. 

The free radical scavenging activity is expressed as SC50 values, the concentration of the sample 
required for 50% of the free radical to be scavenged. It is calculated according to the following equation 

% Scavenging =
Ac −  At

Ac
 x 100                       (1) 

where, Ac = absorbance of control, At = absorbance of test solution.  
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Table 1. Results of DPPH assay (values represent means ± SD). 

Compounds 
Concentration 

(µg/mL) 
DPPH Scavenging 

Activity (%) 
SC 50 (μg/mL) 

Curcumin (1) 

3.33 72.07 ± 0.19 

1.58 
1.67 50.14 ± 0 
0.83 27.79 ± 1.93 
0.42 21.8 ± 0.38 
0.21 10.08 ± 0 

Curcumin monoglucuronide (8) 

33.33 79.5 ± 0.44 

15.61 
16.67 54.5 ± 0.21 
8.33 23.6 ± 0.44 
4.17 6.3 ± 0.22 

Curcumin diglucuronide(11) 

333.33 29.34 ± 0.62 
SC50 was not obtained. 

Inhibition of 29.77% was 
obtained at 333 μg/mL 

166.67 19.5 ± 0.21 
83.33 9.68 ± 0.62 
41.67 6.94 ± 0 
20.83 2.89 ± 0.82 

SC50 is the concentration at which 50% scavenging of DPPH is obtained. The lower the SC50, the better the efficacy, SD is standard deviation. 

Antioxidant Assay by Oxygen Radical Absorbance Capacity (ORAC) [30] 

Twenty-five microliters of different concentrations of the sample was pipetted into each well followed 
by 150 μL of 10 × 10−2 M (final conc.) AAPH reagent (2,2’-Azobis-(2-amidinopropane) 
dihydrochloride) made in 75 mM potassium phosphate buffer (pH 7.4). Then, 150 μL of disodium 
fluorescein dye (final conc. 4.8 × 10−7 M) was added and mixed before the initial reading (f0) was taken. 
Fluorescence reading was taken on Fluostar Optima Microplate Reader at 485/520 nm after every 1 min 
for 35 min (f1……..f35). Twenty-five microliters of phosphate buffer (75 mM) was pipetted in the blank 
instead of antioxidant. Trolox standard from 12.5 to 200 μM was also prepared and used. The number 
of wells being used in the experiment should not exceed 20 to reduce the error due to time lag. Difference 
between duplicates also occurs due to the time lag and to avoid this, the experiment was repeated thrice 
with % CV not more than 15. 

The final ORAC values were calculated by using a quadratic regression equation (Y = a + b X +  
c X2) between the trolox concentration (Y) (μM) and the net area under the Fluorescence decay curve (X) 
and were expressed as micromoles of trolox equivalents per liter or per gram of sample (μmol TE/g or 
μmol TE/L). 

The Area under curve (AUC) = (1 + f1/f0 + f2/f0 + …. + f35/f0.) (2) 

where f0 is the initial fluorescence reading at 0 min and f1 is the fluorescence reading after 1 min. 
The data were analyzed by applying Equation (2). The net AUC was obtained by subtracting the AUC 

of the blank from that of the sample. The value calculated using the net AUC of the sample and the 
quadratic regression equation was divided by the concentration of the sample in g/L. The final value 
obtained is the ORAC value of the sample expressed as μmol TE/g and the result is shown in Table 2.  
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Table 2. Results of ORAC assay. 

Compounds Sample (mg/L) 
ORAC Value 
(µmol TE/g) 

Average ORAC Value 
(µmol TE/g) 

SD 

Curcumin (1) 

0.781 15,830.010 

14,981.34 298.41 
1.563 15,164.094 
3.125 14,981.707 
6.250 14,479.844 

12.500 14,451.057 

Curcumin 
monoglucuronide (8) 

3.125 6891.506 
6891.349 340.893 6.250 7132.319 

12.500 6650.224 

Curcumin diglucuronide(11) 

6.250 2449.353 

2502.489 175.149 
12.500 2425.833 
25.00 2373.853 
50.00 2760.917 

The higher the ORAC value, the better the efficacy. SD is standard deviation. The ORAC average and SD values were 

calculated using a regression equation between the Trolox (standard) concentration and the net area under the curve (AUC). 

The sample net AUC should correspond to the Trolox net AUC.Thus, the concentrations of the test sample that falls under 

the range of net AUC for Trolox are chosen for the calculation of the average ORAC value. 

3. Results and Discussion 

3.1. Synthesis 

The synthesis of curcumin monoglucuronide was performed in three stages, as described in  
Schemes 1–3. 

First stage was involved in the synthesis of key intermediate methyl [1-O-(4′-formyl-2′-
methoxyphenyl)-2,3,4-tri-O-acetyl-β-D-glucopyranosiduronate] (4) (Scheme 1) by condensing known 
methyl 1-bromo-2,3,4-tri-O-acetyl-α-D-glucopyranosiduronate (2) [31,32] with vanillin (3) in presence 
of phase transfer catalyst and provided 28% yield. There are few reports [21,33] on the synthesis of same 
molecule by using either expensive reagents [33] or by using metal catalyst [21]. Our approach consists 
of eco-friendly, inexpensive simple phase transfer condition, which provided a reasonable yield. 

O
AcO

AcO
OAc

MeOOC

Br

MeO

OH

CHO

2

O
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O

MeO CHO

+ a

3 4
 

Scheme 1. Synthesis of methyl [1-O-(4′-formyl-2′-methoxyphenyl)-2,3,4-tri-O-acetyl-β-D-
glucopyranosiduronate] (4). Reagents: (a) CHCl3, NaOH, (Bu4N)+Br−, 50 °C, 4 h. 

In the second stage, target synthon 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-1,4-hexadien-3-one 
(6) was synthesized in two consecutive chemical reactions. So far the synthesis of compound 6 was 
reported in one step by reacting vanillin (3) with acetyl acetone [21,34,35]. This is the first report 
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consisting of an alternative synthetic strategy involving two steps to synthesize compound 6 and it is 
outlined in Scheme II. This strategy was developed in order to have alternative access for obtaining good 
quantity of the final target molecule. In this approach, vanillin (3) was first condensed with acetone in 
the presence of aqueous sodium hydroxide to provide compound 5. Recently, the synthesis of compound 
5 was reported [36] and purified by column chromatography. We have isolated compound 5 by 
crystallization with 71% yield. Compound 5 was then refluxed with sodium and ethanol in 
tetrahydrofuran followed by addition of ethyl-acetate to afford the crude compound 6. Purification of 
crude product by column chromatography on silica gel provided compound 6 with 46% yield. The 
structures of both compounds 5 and 6 were confirmed by their 1H, 13C-NMR spectra and from their  
mass spectra. 

MeO

OH

CH3

O

MeO

OH

O

CH3

OH

3
a b

5 6  

Scheme 2. Synthesis of 5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-1,4-hexadien-3-one 
(6). Reagents: (a) Acetone, NaOH, RT, 18h, (b) Na, EtOH, EtOAc, reflux, 6 h. 

In the third stage, the synthesis of desired molecule, curcumin monoglucuronide (8) was achieved by 
two consecutive reactions, as described in Scheme 3. The first reaction is the usual coupling reaction for 
getting curcumin moiety following the pioneer work of Pabon et al. [37] with minor modification. 
Generally, ethyl acetate is used as solvent for the formation of curcumin skeleton, however, it was found 
that the more polar solvent, N,N-dimethyl formamide (DMF) is also suitable for the same reaction. 
Compound 6 was treated with boric anhydride in DMF at 75 to 80 °C for 1 h; tris-secbutyl borate was 
then added and stirred for another 1 h. Compound 4 was dissolved in DMF and added into the reaction 
mixture followed by addition of n-butyl amine. The reaction mixture was then stirred at 75 to 80 °C for 
4 h. The temperature was maintained at 50–55 °C, and then a 10% aqueous acetic acid solution was 
added and finally it was stirred for an additional 1 h. Product 7 was isolated from crude mixture by 
crystallization with 73% yield. The structure of compound 7 was assigned from its 1H, 13C-NMR spectra 
and from mass spectrum. Deacetylation of compound 7 using sodium methoxide in methanol followed 
by in situ hydrolysis of methyl ester by adding water followed by acidification with Dowex (H+) resin 
afforded the crude compound 8. Purification by column chromatography over silica gel provided the 
desired curcumin monoglucuronide (8) with 57% yield. Compound 8 was characterized by its 1H,  
13C-NMR spectra, and mass spectrum as well as from its elemental analysis. The purity of this molecule 
was verified by analytical HPLC on reversed phase C18 column and obtained with 96% HPLC purity 
(supporting information p-20).  
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Scheme 3. Synthesis of mono-(β-D-glucopyranosiduronic acid)-curcumin (curcumin-
monoglucuronide) (8). Reagents: (a) B2O3, (sBuO)3B, n-BuNH2, DMF, 75–80 °C, 6 h, (b) 
(i) NaOMe, MeOH, H2O, RT, 24 h;(ii) Dowex (H+), RT, 30 min. 

So far, except the analytical data for acetylated curcumin diglucuronide and curcumin  
diglucuronide [21], no experimental details are available in the literature. We are the first to report herein 
the experimental details of the synthesis of acetylated curcumin diglucuronide (10) and curcumin 
diglucuronide (11) (Scheme 4). 

The usual coupling reaction was used for getting curcumin moiety following the pioneer work of 
Pabon et al. [37] with minor modification as described in the synthesis of compound 7. The synthesis of 
acetylated curcumin diglucuronide (10) was achieved by reacting acetyl acetone (9) with boric anhydride 
in DMF in the presence of tris sec-butyl borate followed by addition of compound 4 in DMF and n-butyl 
amine. The reaction mixture was then stirred at 75 to 80 °C for 4h. The temperature was then maintained 
at 50–55 °C and added 10% aqueous acetic acid solution and stirred for an additional 1 h. The acetylated 
curcumin diglucuronide (10) was purified from crude reaction mixture by column chromatography and 
obtained with 59% yield. The structure of compound 10 was assigned from its 1H, 13C-NMR spectra, 
and mass spectrum. Deacetylation of compound 10 in the presence of sodium methoxide in methanol 
followed by addition of water for in situ hydrolysis of methyl ester followed by acidification with Dowex 
(H+) resin provided crude curcumin diglucuronide (11). Purification by crystallization was attempted, 
however we could only achieve 82% HPLC purity (Supporting Information p-25) of the desired 
curcumin diglucuronide (11). It was not further purified by preparative HPLC, as analytical data already 
exist in the literature [21]. Compound 11 having HPLC purity 82% was used for anti-oxidant activity 
study in order to evaluate its biological function with its existing purity state. 
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Scheme 4. Synthesis of Bis-(β-D-glucopyranosiduronic acid)-curcumin (curcumin 
diglucuronide) (11). Reagents: (a) B2O3, (sBuO)3B, n-BuNH2, DMF, 75–80 °C, 6 h,  
(b) (i) NaOMe, MeOH-CH2Cl2, H2O, RT, 18 h, (ii) Dowex (H+), RT, 30 min. 

3.2. Anti-Oxidant Studies 

The strength of anti-oxidants is determined by measuring its free radical scavenging ability. 
Numerous methods are generally used to measure the capacity of anti-oxidants; however we have 
focused on two methods described as follows. 

3.2.1. Antioxidant Assay by DPPH Scavenging Method [28,29] 

The free radical scavenging activity is determined based on the interaction of stable free radical  
1,1-diphenyl-2-picryl hydrazyl radical (DPPH) [28,29] with antioxidant in organic/aqueous organic 
media resulting in bleaching of the DPPH as it gets quenched by the analytes. The concentration of 
antioxidant in the test solution was determined by the decrease of absorbance of DPPH compared to 
blank and was measured spectrophotometrically at 516 nm. 

3.2.2. Antioxidant Assay by Oxygen Radical Absorbance Capacity (ORAC) [30] 

The Oxygen Radical Absorbance Capacity (ORAC) assay [30] depends on the free radical damage to 
a fluorescent probe through the change in its fluorescence intensity. The change of fluorescence intensity 
is an index of the degree of free radical damage. In presence of antioxidants, the free radical damage is 
inhibited and this is reflected in the protection against the change of probe fluorescence, which is the 
measure of its antioxidant capacity against the free radical. 

The interesting observation that the anti-oxidant activity of curcumin monoglucuronide (8) falls 
precipitously by several folds in DPPH method is indicative of the fact that the anti-oxidant action of 
curcumin is mediated more by the SPLET (sequential proton loss electron transfer) mechanism than by 
HAT (hydrogen atom transfer) pathway [38,39]. In SPLET pathway, curcumin is prone to form anion in 
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an equilibrium, which then transfers an electron to DPPH. Tendency to form such phenolic anion in the 
monoglucuronide of curcumin (8) is very low due to the presence of glucuronic acid moiety with an 
acidic carboxyl group in its structure and hence SPLET pathway becomes insignificant [40] as 
represented in Figure 2. 
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Figure 2. Possible sequential proton loss electron transfer (SPLET) pathway of (I) curcumin 
(1) and (II) curcumin monoglucuronide (8). 

The presence of -COOH in the monoglucuronide, with an acidity ~105 times higher than the phenolic 
–OH will definitely reduce the phenoxide concentration that would be needed for effective radical 
scavenging functioning of the curcumin monoglucuronide. 

Curcumin diglucuronide (11) (not shown in figure) is thus not effective as radical scavenger. 
In the ORAC method, which estimates the radical chain-breaking capacity of the anti-oxidant 

primarily acting through the HAT pathway, the decrease in the anti-oxidant capacity of the glucuronides 
of curcumin (8) and (11) is more gradual [41] and consistent with progressive blockage of the phenolic 
groups with glucuronic acid moiety. The decrease in ORAC values is consistent with the fact that the 
anti-oxidant activity of curcumin in ORAC systems are dependent on the phenolic –OH than the enolic 
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–OH [40] since the bond dissociation energy (BDE) is less for the former by ~5 kcal/mol according to 
DFT calculations [42]. 

4. Conclusions 

Gram quantity of curcumin monoglucuronide (8) and milligram quantity of curcumin diglucuronide 
(11) were synthesized using an alternative synthetic approach. This report illustrates for the first time 
the experimental details of synthesis of acetylated curcumin diglucuronide (10) and curcumin 
diglucuronide (11) that have so far not yet appeared in the literature [21]. The HPLC purity of compounds 
8 and 11 were verified by analytical HPLC and found to have purities of 96% and 82%, respectively. 
Curcumin monoglucuronide (8) was characterized not only with its 1H and 13C-NMR and mass spectra 
but also by its elemental analysis. This synthetic approach illuminates alternative access for practical 
synthesis of curcumin monoglucuronide in gram quantity. Synthesized curcumin monoglucuronide (8) 
and curcumin diglucuronide (11) were studied to determine their anti-oxidant activity in comparison 
with curcumin. Their anti-oxidant activity was measured by DPPH scavenging method and by Oxygen 
Radical Absorbance Capacity (ORAC) assay. The biological results demonstrated that curcumin 
monoglucuronide (8) eventually exhibited 10 fold less anti-oxidant activity and curcumin diglucuronide 
(11) was not at all comparable in respect to the anti-oxidant activity of curcumin. 

In curcumin monoglucuronide (8) and curcumin diglucuronide (11), the enolic hydroxyl group of the 
predominant enol tautomer is free. This probably contributes very little to the anti-oxidant capacity of 
curcumin as assessed by DPPH method. This is in accordance with the conclusions arrived at by  
Liu et al. [43]. The absence of anti-oxidant activity, anti-cancer-activity and absence of NF-κB inhibiting 
activity of these curcumin glucuronides 8 and 11 also lead to the conclusion that these glucuronide 
metabolites of curcumin may not play any significant role in the pharmacological activity of curcumin. 
Despite the poor anti-oxidant activity of glucuronide metabolites of curcumin, curcumin still displays its 
pharmacological activity after oral administration. Thus, the pharmacological effects of curcumin may 
not be entirely due to its antioxidant activity, but could also be due to its pleiotropic pharmacology, 
which might be operational when interacting with its molecular targets. Alternatively, other reductive 
metabolites such as tetrahydrocurcumin might play a significant role in mediating the effects of 
curcumin. 

Supporting Information 

1H, 13C-NMR spectra and mass spectra of compounds 4, 5, 6, 7, 8 and 10. Elemental analysis data of 
compound 8. Mass spectrum of compound 11. HPLC chromatograms of compounds 8 and 11. 
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